Identification of hypoxia-inducible target genes of Aspergillus fumigatus by transcriptome analysis reveals cellular respiration as an important contributor to hypoxic survival.
نویسندگان
چکیده
Aspergillus fumigatus is an opportunistic, airborne pathogen that causes invasive aspergillosis in immunocompromised patients. During the infection process, A. fumigatus is challenged by hypoxic microenvironments occurring in inflammatory, necrotic tissue. To gain further insights into the adaptation mechanism, A. fumigatus was cultivated in an oxygen-controlled chemostat under hypoxic and normoxic conditions. Transcriptome analysis revealed a significant increase in transcripts associated with cell wall polysaccharide metabolism, amino acid and metal ion transport, nitrogen metabolism, and glycolysis. A concomitant reduction in transcript levels was observed with cellular trafficking and G-protein-coupled signaling. To learn more about the functional roles of hypoxia-induced transcripts, we deleted A. fumigatus genes putatively involved in reactive nitrogen species detoxification (fhpA), NAD(+) regeneration (frdA and osmA), nitrogen metabolism (niaD and niiA), and respiration (rcfB). We show that the nitric oxygen (NO)-detoxifying flavohemoprotein gene fhpA is strongly induced by hypoxia independent of the nitrogen source but is dispensable for hypoxic survival. By deleting the nitrate reductase gene niaD, the nitrite reductase gene niiA, and the two fumarate reductase genes frdA and osmA, we found that alternative electron acceptors, such as nitrate and fumarate, do not have a significant impact on growth of A. fumigatus during hypoxia, but functional mitochondrial respiratory chain complexes are essential under these conditions. Inhibition studies indicated that primarily complexes III and IV play a crucial role in the hypoxic growth of A. fumigatus.
منابع مشابه
Analysis of the Aspergillus fumigatus Proteome Reveals Metabolic Changes and the Activation of the Pseurotin A Biosynthesis Gene Cluster in Response to Hypoxia
The mold Aspergillus fumigatus is the most important airborne fungal pathogen. Adaptation to hypoxia represents an important virulence attribute for A. fumigatus. Therefore, we aimed at obtaining a comprehensive overview about this process on the proteome level. To ensure highly reproducible growth conditions, an oxygen-controlled, glucose-limited chemostat cultivation was established. Two-dime...
متن کاملMyeloid Derived Hypoxia Inducible Factor 1-alpha Is Required for Protection against Pulmonary Aspergillus fumigatus Infection
Hypoxia inducible factor 1α (HIF1α) is the mammalian transcriptional factor that controls metabolism, survival, and innate immunity in response to inflammation and low oxygen. Previous work established that generation of hypoxic microenvironments occurs within the lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we demonstrate that A. fumigatus stabilizes HIF1α p...
متن کاملChIP-seq and In Vivo Transcriptome Analyses of the Aspergillus fumigatus SREBP SrbA Reveals a New Regulator of the Fungal Hypoxia Response and Virulence
The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs m...
متن کاملHuman activated macrophages and hypoxia: a comprehensive review of the literature
Macrophages accumulate in poorly vascularised and hypoxic sites including solid tumours, wounds and sites of infection and inflammation where they can be exposed to low levels of oxygen for long periods. Up to date, different studies have shown that a number of transcription factors are activated by hypoxia which in turn activate a broad array of mitogenic, pro-invasive, pro-angiogenic, and pro...
متن کاملMolecular identification of aflatoxigenic Aspergillus species in feedstuff samples
Background and Purpose: Aflatoxins are naturally produced by some species of Aspergillus, such as A. flavus and A. parasiticus. Aflatoxins reportedly have carcinogenic effects on human, poultry, and livestock, and therefore could be linked to severe human illnesses. Aflatoxin biosynthesis pathway involves different clustered genes, including structural, regular, and unassigned genes. The presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 13 9 شماره
صفحات -
تاریخ انتشار 2014